American Chemical Society
Browse

ATRP−RCM Synthesis of Cyclic Diblock Copolymers

Download (116.81 kB)
journal contribution
posted on 2008-11-11, 00:00 authored by Kaoru Adachi, Satoshi Honda, Shotaro Hayashi, Yasuyuki Tezuka
A versatile synthetic means for cyclic diblock copolymers has been developed by the combination of atom transfer radical polymerization (ATRP) and ring-closing metathesis (RCM) techniques. Thus, first, an A−B type allyl-telechelic diblock copolymer comprised of two different acrylate ester segments, i.e., poly(methyl acrylate)-b-poly(n-butyl acrylate), poly(MA)-b-poly(BA), was prepared via the ATRP of MA, followed by the addition of the second monomer, BA, with allyl bromide as an initiator and with allyltributylstannane as an end-capping reagent, respectively. Alternatively, an A−B−A type allyl-telechelic triblock copolymer comprised of poly(BA) and poly(ethylene oxide), poly(EO), segments was prepared via the ATRP of BA using a poly(EO) macroinitiator having 2-bromoisobutyryl end groups, followed by the end-capping reaction with allyltributylstannane. The subsequent RCM of the allyl-telechelic block copolymers under dilution in the presence of Grubbs catalyst could afford the corresponding A−B type cyclic diblock copolymers.

History