American Chemical Society
nl4026665_si_001.pdf (1.61 MB)
Download file

3D Super-Resolution Imaging with Blinking Quantum Dots

Download (1.61 MB)
journal contribution
posted on 2013-11-13, 00:00 authored by Yong Wang, Gilbert Fruhwirth, En Cai, Tony Ng, Paul R. Selvin
Quantum dots are promising candidates for single molecule imaging due to their exceptional photophysical properties, including their intense brightness and resistance to photobleaching. They are also notorious for their blinking. Here we report a novel way to take advantage of quantum dot blinking to develop an imaging technique in three-dimensions with nanometric resolution. We first applied this method to simulated images of quantum dots and then to quantum dots immobilized on microspheres. We achieved imaging resolutions (fwhm) of 8–17 nm in the xy plane and 58 nm (on coverslip) or 81 nm (deep in solution) in the z-direction, approximately 3–7 times better than what has been achieved previously with quantum dots. This approach was applied to resolve the 3D distribution of epidermal growth factor receptor (EGFR) molecules at, and inside of, the plasma membrane of resting basal breast cancer cells.