am9b11644_si_001.pdf (583.34 kB)
Download file

3D Bioprinting Using Cross-Linker-Free Silk–Gelatin Bioink for Cartilage Tissue Engineering

Download (583.34 kB)
journal contribution
posted on 09.09.2019, 21:13 by Yogendra Pratap Singh, Ashutosh Bandyopadhyay, Biman B. Mandal
Cartilage tissue is deprived of intrinsic self-regeneration capability; hence, its damage often progresses to a chronic condition which reduces the quality of life. Toward the fabrication of functional tissue substitutes, three-dimensional (3D) bioprinting has progressed vastly over the last few decades. However, this progress is challenged by the difficulty in developing suitable bioink materials as most of them require toxic chemical cross-linking. In this study, our goal was to develop a cross-linker-free bioink with optimal rheology for polymer extrusion, aqueous, and nontoxic processing and offers structural support for cartilage regeneration. Toward this, we use the self-gelling ability of silk fibroin blends (Bombyx mori and Philosamia ricini) along with gelatin as a bulking agent. Silk and gelatin interact with each other through entanglement and physical cross-linking. The ink was rheologically and structurally optimized for printing efficiency in printing grid-like structures. The printed 3D constructs show optimal swelling capability, degradability, and compressive strength. Further, the construct supports the growth and proliferation of encapsulated chondrocytes and formation of the cartilaginous extracellular matrix as indicated by the increased sulfated glycosaminoglycan and collagen contents. This was further corroborated by the upregulation of chondrogenic gene expression with minimal hypertrophy of chondrocytes. Additionally, the construct demonstrates in vitro and in vivo biocompatibility. Notably, the ink demonstrates good print fidelity for printing anatomical structures such as the human ear enabled by optimized extrudability at adequate resolution. Altogether, the results indicate that the developed cross-linker-free silk–gelatin polymer-based bioink demonstrated high potential for its 3D bioprintability and application in cartilage tissue engineering.