pr301085c_si_001.pdf (230.75 kB)
Download file

14-3-3ε Boosts Bleomycin-induced DNA Damage Response by Inhibiting the Drug-resistant Activity of MVP

Download (230.75 kB)
journal contribution
posted on 19.02.2016, 07:02 authored by Siwei Tang, Chen Bai, Pengyuan Yang, Xian Chen
Major vault protein (MVP) is the predominant constituent of the vault particle, the largest known ribonuclear protein complex. Although emerging evidence have been establishing the links between MVP (vault) and multidrug resistance (MDR), little is known regarding exactly how the MDR activity of MVP is modulated during cellular response to drug-induced DNA damage (DDR). Bleomycin (BLM), an anticancer drug, induces DNA double-stranded breaks (DSBs) and consequently triggers the cellular DDR. Due to its physiological implications in hepatocellular carcinoma (HCC) and cell fate decision, 14-3-3ε was chosen as the pathway-specific bait protein to identify the critical target(s) responsible for HCC MDR. By using an LC–MS/MS-based proteomic approach, MVP was first identified in the BLM-induced 14-3-3ε interactome formed in HCC cells. Biological characterization revealed that MVP possesses specific activity to promote the resistance to the BLM-induced DDR. On the other hand, 14-3-3ε enhances BLM-induced DDR by interacting with MVP. Mechanistic investigation further revealed that 14-3-3ε, in a phosphorylation-dependent manner, binds to the phosphorylated sites at both Thr52 and Ser864 of the monomer of MVP. Consequently, the phosphorylation-dependent binding between 14-3-3ε and MVP inhibits the drug-resistant activity of MVP for an enhanced DDR to BLM treatment. Our findings provide an insight into the mechanism underlying how the BLM-induced interaction between 14-3-3ε and MVP modulates MDR, implicating novel strategy to overcome the chemotherapeutic resistance through interfering specific protein–protein interactions.