mp7b00662_si_001.pdf (1.67 MB)

N‑Deoxycholic acid‑N,O‑hydroxyethyl Chitosan with a Sulfhydryl Modification To Enhance the Oral Absorptive Efficiency of Paclitaxel

Download (1.67 MB)
journal contribution
posted on 23.10.2017 by Yanfang Yu, Meirong Huo, Ying Fu, Wei Xu, Han Cai, Lingling Yao, Qingyu Chen, Yan Mu, Jianping Zhou, Tingjie Yin
Currently, the most prominent barrier to the success of orally delivered paclitaxel (PTX) is the extremely limited bioavailability of delivered therapeutic. In light of this issue, an amphiphilic sulfhydrylated N-deoxycholic acid-N,O-hydroxyethyl chitosan (TGA-DHC) was synthesized to improve the oral bioavailability of PTX. First, TGA-DHC demonstrated substantial loading of PTX into the inner hydrophobic core. A desirable enhancement in the bioavailability of PTX by TGA-DHC was verified by pharmacokinetic studies on rats against Taxol and non-sulfhydrylated DHC micelles. Moreover, cellular uptake studies revealed significant accumulation of TGA-DHC micelles encapsulating PTX or rhodamine-123 into Caco-2 cells via clathrin/caveolae-mediated endocytosis and inhibition of P-gp efflux of substrates. The results of the Caco-2 transport study further confirmed the mechanistic basis of TGA-DHC efficacy; which was attributed to permeabilized tight junctions, clathrin-mediated transcytosis across the endothelium, and inhibition of P-gp. Finally, in vitro mucoadhesion investigations on freshly excised rat intestine intuitively confirmed increased intestinal retention of drug-loaded TGA-DHC through thiol-mediated mucoadhesion. TGA-DHC has demonstrated the capability to overcome what is perhaps the most prominent barrier to oral PTX efficacy, low bioavailability, and serves as a prominent platform for oral delivery of P-gp substrates.