nn8b00653_si_001.pdf (2.1 MB)

In Situ Growth of Layered Bimetallic ZnCo Hydroxide Nanosheets for High-Performance All-Solid-State Pseudocapacitor

Download (2.1 MB)
journal contribution
posted on 22.02.2018 by Zhichang Pan, Yingchang Jiang, Peiyu Yang, Zeyi Wu, Wenchao Tian, Liu Liu, Yun Song, Qinfen Gu, Dalin Sun, Linfeng Hu
Two-dimensional (2D) hydroxide nanosheets can exhibit exceptional electrochemical performance owing to their shortened ion diffusion distances, abundant active sites, and various valence states. Herein, we report ZnCo1.5(OH)4.5Cl0.5·0.45H2O nanosheets (thickness ∼30 nm) which crystallize in a layered structure and exhibit a high specific capacitance of 3946.5 F g–1 at 3 A g–1 for an electrochemical pseudocapacitor. ZnCo1.5(OH)4.5Cl0.5·0.45H2O was synthesized by a homogeneous precipitation method and spontaneously crystallized into 2D nanosheets in well-defined hexagonal morphology with crystal structure revealed by synchrotron X-ray powder diffraction data analysis. In situ growth of ZnCo1.5(OH)4.5Cl0.5·0.45H2O nanosheet arrays on conductive Ni foam substrate was successfully realized. Asymmetric supercapacitors based on ZnCo1.5(OH)4.5Cl0.5·0.45H2O nanosheets @Ni foam// PVA, KOH//reduced graphene oxide exhibits a high energy density of 114.8 Wh kg–1 at an average power density of 643.8 W kg–1, which surpasses most of the reported all-solid-state supercapacitors based on carbonaceous materials, transition metal oxides/hydroxides, and MXenes. Furthermore, a supercapacitor constructed from ZnCo1.5(OH)4.5Cl0.5·0.45H2O nanosheets@PET substrate shows excellent flexibility and mechanical stability. This study provides layered bimetallic hydroxide nanosheets as promising electroactive materials for flexible, solid-state energy storage devices, presenting the best reported performance to date.