ja0457462_si_001.pdf (395.83 kB)

Water-Solubilized, Cap-Stabilized, Helical Polyalanines:  Calibration Standards for NMR and CD Analyses

Download (395.83 kB)
journal contribution
posted on 16.02.2005 by Björn Heitmann, Gabriel E. Job, Robert J. Kennedy, Sharon M. Walker, Daniel S. Kemp
NMR and CD studies are reported for two length series of solubilized, spaced, highly helical polyalanines that are N-capped by the optimal helix stabilizer βAsp-Hel and C-capped by β-aminoalanine beta and that are studied in water at 2 °C, pH 1−8. NMR analysis yields a structural characterization of the peptide AcβAspHelAla8betaNH2 and selected members of one βAspHelAlanbeta series. At pH > 4.5 the βAspHel cap provides a preorganized triad of carboxylate anion and two amide residues that is complementary to the helical polyalanine N-terminus. The C-terminal β-aminoalanine assumes a helix-stabilizing conformation consistent with literature precedents. H(N)CO NMR experiments applied to capped, uniformly 13C- and 15N-labeled Ala8 and Ala12 peptides define Alan hydrogen bonding signatures as α-helical without detectable 310 character. Relative NH→ND exchange rates yield site protection factors PFi that define uniquely high fractional helicities FH for the peptide Alan regions. These Alan calibration series, studied in water and lacking helix-stabilizing tertiary structure, yield the first 13C NMR chemical shifts, 3JHNHα coupling constants, and CD ellipticities [θMolar]λ,n characteristic of a fully helical alanine within an Alan context. CD data are used to assign parameters X and [θ]λ,, required for rigorous calculation of FH values from CD ellipticities.

History

Exports