ic8b03048_si_001.pdf (361.16 kB)

Twists to the Spin Structure of the Ln9‑diabolo Motif Exemplified in Two {Zn2Ln2}[Ln9]{Zn2} Coordination Clusters

Download (361.16 kB)
journal contribution
posted on 31.01.2019 by Kieran Griffiths, Irina A. Kühne, Graham J. Tizzard, Simon J. Coles, George E. Kostakis, Annie K. Powell
Two pentadecanuclear Zn4Ln11 [with Ln = Gd­(1) or Dy­(2)] coordination clusters, best formulated as {Zn2Ln2}­[Ln9]­{Zn2}, are presented. The central {Ln9} diabolo core has a {Zn2Ln2} handle motif pulling at two outer Ln ions of the central core via two {ZnLn} units, which also invest the system with C2 point symmetry. The resulting cluster motif is supported on two Zn “feet”, corresponding to the {Zn2} unit in the formula. A thorough investigation of the magnetic properties in the light of the properties of previously reported {Ln9} diabolo compounds was undertaken. Up to now, the spin structure of such diabolo motifs usually proves ambiguous. Our magnetic studies show that the orientation of the central spin in the {Gd9} diabolo plays a decisive role. In stabilizing the core by attachment of the {Zn}2+ “feet” and using the C2 symmetry related {ZnGd}5+ handles to influence the spin direction of the central Gd of the {Gd9} diabolo, we can understand why the “naked” {Gd9} diabolo shows ambiguous spin structure. This then allowed us to elucidate the single-molecule magnetic (SMM) properties of the Dy-based compound 2 through disentangling the magnetic properties of the isostructural Gd-based compound 1.