ma200119s_si_001.pdf (501.4 kB)

Toward Perfect Control of End Groups and Polydispersity in Poly(3-hexylthiophene) via Catalyst Transfer Polymerization

Download (501.4 kB)
journal contribution
posted on 10.05.2011 by Ruth H. Lohwasser, Mukundan Thelakkat
We report the influence of the active Grignard monomer formation on the end groups and polydispersity of poly(3-hexylthiophene) (P3HT) for the catalyst transfer polymerization. The rate of the active Grignard monomer formation of 2,5-dibromo-3-hexylthiophene using t-BuMgCl was studied using 1H NMR. Only in the absence of unreacted/excess t-BuMgCl, polymers with 100% H/Br end groups were formed. If the active Grignard monomer formation was incomplete and thus unreacted t-BuMgCl remained, the end groups depended on the polymerization time; the ratio of H/Br to H/H end groups decreased with increasing time. LiCl was shown to accelerate the active Grignard monomer formation but negatively affects the regioregularity to a small extent. It also increases the molecular weight of P3HT when used in combination with Ni(dppp)Cl2 as a catalyst. Further, MeOH as a quenching reagent was identified to cause chain−chain coupling and hence an increase in the polydispersity. Thus, important parameters influencing the kinetics of the catalyst transfer polymerization were studied, and a series of P3HTs with 100% H/Br end groups and low polydispersities were synthesized by an optimized procedure. These findings are very relevant for extending this polymerization method to new monomers and for the realization of well-defined block copolymers.