ao0c00537_si_001.pdf (1.17 MB)

Synthesis of Value-Added Chemicals via Oxidative Coupling of Methanes over Na2WO4–TiO2–MnOx/SiO2 Catalysts with Alkali or Alkali Earth Oxide Additives

Download (1.17 MB)
journal contribution
posted on 05.06.2020, 19:34 by Phattaradit Kidamorn, Worapinit Tiyatha, Thanaphat Chukeaw, Chalida Niamnuy, Metta Chareonpanich, Hiesang Sohn, Anusorn Seubsai
Na2WO4–TiO2–MnOx/SiO2 (SM) catalysts with alkali (Li, K, Rb, Cs) or alkali earth (Mg, Ca, Sr, Ba) oxide additives, which were prepared using incipient wetness impregnation, were investigated for oxidative coupling of methane (OCM) to value-added hydrocarbons (C2+). A screening test that was performed on the catalysts revealed that SM with Sr (SM–Sr) had the highest yield of C2+. X-ray photoelectron spectroscopy analyses indicated that the catalysts with a relatively low binding energy of W 4f7/2 facilitated a high CH4 conversion. A combination of crystalline MnTiO3, Mn2O3, α-cristobalite, Na2WO4, and TiO2 phases was identified as an essential component for a remarkable improvement in the activity of the catalysts in the OCM reaction. In attempts to optimize the C2+ yield, 0.25 wt % Sr onto SM–Sr achieved the highest C2+ yield at 22.9% with a 62.5% C2+ selectivity and a 36.6% CH4 conversion. A stability test of the optimal catalyst showed that after 24 h of testing, its activity decreased by 18.7%.