am5b10975_si_001.pdf (51.84 kB)

Structural and Electrical Properties of EOT HfO2 (<1 nm) Grown on InAs by Atomic Layer Deposition and Its Thermal Stability

Download (51.84 kB)
journal contribution
posted on 01.03.2016 by Yu-Seon Kang, Hang-Kyu Kang, Dae-Kyoung Kim, Kwang-Sik Jeong, Min Baik, Youngseo An, Hyoungsub Kim, Jin-Dong Song, Mann-Ho Cho
We report on changes in the structural, interfacial, and electrical characteristics of sub-1 nm equivalent oxide thickness (EOT) HfO2 grown on InAs by atomic layer deposition. When the HfO2 film was deposited on an InAs substrate at a temperature of 300 °C, the HfO2 was in an amorphous phase with an sharp interface, an EOT of 0.9 nm, and low preexisting interfacial defect states. During post deposition annealing (PDA) at 600 °C, the HfO2 was transformed from an amorphous to a single crystalline orthorhombic phase, which minimizes the interfacial lattice mismatch below 0.8%. Accordingly, the HfO2 dielectric after the PDA had a dielectric constant of ∼24 because of the permittivity of the well-ordered orthorhombic HfO2 structure. Moreover, border traps were reduced by half than the as-grown sample due to a reduction in bulk defects in HfO2 dielectric during the PDA. However, in terms of other electrical properties, the characteristics of the PDA-treated sample were degraded compared to the as-grown sample, with EOT values of 1.0 nm and larger interfacial defect states (Dit) above 1 × 1014 cm–2 eV–1. X-ray photoelectron spectroscopy data indicated that the diffusion of In atoms from the InAs substrate into the HfO2 dielectric during the PDA at 600 °C resulted in the development of substantial midgap states.