ac302875p_si_001.pdf (335.67 kB)

Sensitive Nanochannel Biosensor for T4 Polynucleotide Kinase Activity and Inhibition Detection

Download (335.67 kB)
journal contribution
posted on 02.01.2013 by Lei Lin, Yang Liu, Jing Yan, Xingsheng Wang, Jinghong Li
5′-Polynucleotide kinase is a crucial class of enzyme that catalyzes the phosphorylation of nucleic acids with 5′-hydroxyl termini. This process regulates many important cellular events, especially DNA repair during strand damage and interruption. The activity and inhibition of nucleotide kinase have proven to be an evident effect on cellular nucleic acid regulation and metabolism. Here, we describe a novel nanochannel biosensor for monitoring the activity and inhibition of T4 polynucleotide kinase (PNK), a famous member of the 5′-kinase family playing a major role in the cellular responses to DNA damage. On the basis of the functionalized nanochannel system and coupled λ exonuclease cleavage reaction, the nanochannel-sensing platform exhibits high sensitivity and convenience toward kinase analysis. Biotin-labeled dsDNA effectively blocks the streptavidin-modified nanochannel through forming a closely packed arrangement of DNA structure inside the channel. When dsDNA is phosphorylated by PNK and then immediately cleaved by λ exonuclease, the pore-blocking effect almost disappears. This PNK-induced microstructural distinctness can be directly and accurately monitored by the nanochannel system, which benefits from its high sensitivity to the change of the effective pore size. Furthermore, modification convenience and mechanical robustness also ensure the stability of the test platform. This as-proposed strategy exhibits excellent analytical performance in both PNK activity analysis and inhibition evaluation. The simple and sensitive nanochannel biosensor shows great potential in developing on-chip, high-throughput assays for fundamental biochemical process research, molecular-target therapies, and clinic diagnostics.

History

Exports