ac6b02079_si_001.pdf (128.18 kB)

Retention in Porous Layer Pillar Array Planar Separation Platforms

Download (128.18 kB)
journal contribution
posted on 11.08.2016 by Danielle R. Lincoln, Nickolay V. Lavrik, Ivan I. Kravchenko, Michael J. Sepaniak
This work presents the retention capabilities and surface area enhancement of highly ordered, high-aspect-ratio, open-platform, two-dimensional (2D) pillar arrays when coated with a thin layer of porous silicon oxide (PSO). Photolithographically prepared pillar arrays were coated with 50–250 nm of PSO via plasma-enhanced chemical vapor deposition and then functionalized with either octadecyltrichlorosilane or n-butyldimethylchlorosilane. Theoretical calculations indicate that a 50 nm layer of PSO increases the surface area of a pillar nearly 120-fold. Retention capabilities were tested by observing capillary-action-driven development under various conditions, as well as by running one-dimensional separations on varying thicknesses of PSO. Increasing the thickness of PSO on an array clearly resulted in greater retention of the analyte(s) in question in both experiments. In culmination, a two-dimensional separation of fluorescently derivatized amines was performed to further demonstrate the capabilities of these fabricated platforms.

History

Exports