jp9023926_si_001.pdf (1.19 MB)

Quantum Mechanics/Molecular Mechanics Studies on the Sulfoxidation of Dimethyl Sulfide by Compound I and Compound 0 of Cytochrome P450: Which Is the Better Oxidant?

Download (1.19 MB)
journal contribution
posted on 29.10.2009 by Cristina S. Porro, Michael J. Sutcliffe, Sam P. de Visser
The cytochromes P450 are ubiquitous enzymes that are involved in key metabolizing processes in the body through the monoxygenation of substrates; however, their active oxidant is elusive. There have been reports that implicate that two oxidants, namely, the iron(IV)−oxo porphyrin cation radical (compound I) and the iron(III)-hydroperoxo complex (compound 0), both act as oxidants of sulfoxidation reactions, which contrasts theoretical studies on alkene epoxidation by compounds I and 0 that implicated compound 0 as a sluggish oxidant. To resolve this controversy and to establish the potency of compound I and compound 0 in sulfoxidation reactions, we have studied dimethyl sulfide sulfoxidation by both oxidants using the quantum mechanics/molecular mechanics (QM/MM) technique on cytochrome P450 enzymes and have set up a model of two P450 isozymes: P450cam and P450BM3. The calculations support earlier gas-phase density functional theory modeling and show that compound 0 is a sluggish oxidant that is unable to compete with compound I. Furthermore, compound I is shown to react with dimethyl sulfide via single-state reactivity on a dominant quartet spin state surface.

History

Exports