am9b11213_si_001.pdf (536.01 kB)
0/0

Nonprecious Catalyst for Three-Phase Contact in a Proton Exchange Membrane CO2 Conversion Full Cell for Efficient Electrochemical Reduction of Carbon Dioxide

Download (536.01 kB)
journal contribution
posted on 17.10.2019 by Sreetama Ghosh, Meenakshi Seshadhri Garapati, Arpita Ghosh, Ramaprabhu Sundara
Development of a cost-effective and highly efficient electrocatalyst is essential but challenging in order to convert carbon dioxide to value-added chemicals at ambient conditions. In the current work, the activity of a full electrochemical cell has been demonstrated, utilizing a proton exchange membrane CO2 conversion cell that can selectively convert carbon dioxide to a value-added chemical (formic acid) at room temperature and pressure. A cost-effective, nonprecious-metal-based electrocatalyst, nitrogen-doped carbon nanotubes encapsulating Fe3C nanoparticles (Fe3C@NCNTs), has been reported to exhibit superior catalytic activity toward the electrochemical CO2 reduction reaction (CO2RR). A facile one-step synthesis procedure has been undertaken to synthesize Fe3C@NCNTs. CO2 adsorption takes place via sharing of charge between the nucleophilic anchoring site (Fe3C) and the electrophilic C site of CO2, as shown by the DFT studies. The porous architecture, unique tubular structure, high graphitization degree, and appropriate doping of the Fe3C-encapsulating NCNTs allow better three-phase contact of CO2 (gas), H2O (liquid), and catalyst (solid), which can enhance the electrocatalytic activity of the cell, as demonstrated by the experimental findings. The cell was tested under a continuous flow of CO2 gas and has been demonstrated to produce a good amount of formic acid (HCOOH). The production of formic acid was examined by utilizing UV–vis spectroscopy and high-performance liquid chromatography (HPLC). A series of designed experiments disclosed that the maximum yield of formic acid was as high as 90% with Fe3C@NCNTs as both anode and cathode catalysts. Technology to scale up the reduction procedure has also been proposed and shown in this particular work. These unique observations open a route for the development of cost-effective and highly active platinum-free electrocatalysts for the CO2RR.

History

Exports