ab8b01534_si_001.pdf (412.61 kB)

Near-Infrared Responsive Bimetallic Nanovesicles for Enhanced Synergistic Chemophotothermal Therapy

Download (412.61 kB)
journal contribution
posted on 08.02.2019 by Liyao Luo, Hongyu He, Chunhui Li, Yaqian He, Zining Hao, Shuai Wang, Qianqian Zhao, Zhiwei Liu, Dawei Gao
Limited therapeutic effects and obvious side effects are two critical problems affecting tumor therapy. Herein, we designed an ingenious nanocarrier, platinum/gold bimetallic-nanoshell-coated triptolide liposomes (Pt@Au-TP-Lips), to achieve enhanced chemophotothermal therapy against cancer. Compared to conventional gold nanoflower structures, the platinum/gold bimetallic (Pt@Au) core–shells exhibited broader near-infrared (NIR) absorption due to the ultrastrong plasmonic coupling effect. With NIR light irradiation, the Pt@Au nanostructure could efficiently and sustainably convert light energy into substantial heat. The ultrahigh photothermal conversion efficiency (56.5%) of Pt@Au-TP-Lips was significantly higher than that of gold nanoflowers (35.7%). Specifically, hyperthermia could induce a phase change in the liposome membrane to accelerate the release of triptolide (TP); meanwhile, it could ablate tumor cells directly and facilitate the cellular uptake of drugs to enhance chemotherapy. More importantly, owing to the cooperation of TP and platinum, Pt@Au-TP-Lips exhibited significant tumor growth suppression with a high inhibitory rate of 90.7%, achieving superior chemophotothermal combination therapy. This work provides new insight into the development of a cooperative theranostic agent for oncotherapy.