ja0c01482_si_001.pdf (25.03 MB)

Multicomponent Metallo-Supramolecular Nanocapsules Assembled from Calix[4]resorcinarene-Based Terpyridine Ligands

Download (25.03 MB)
journal contribution
posted on 13.03.2020, 17:37 by Lipeng He, Shi-Cheng Wang, Lin-Ting Lin, Jhen-Yu Cai, Lijie Li, Tsung-Han Tu, Yi-Tsu Chan
Tetrafunctionalized calix[4]­resorcinarene cavitands commonly serve as supramolecular scaffolds for construction of coordination-driven self-assembled capsules. However, due to the calix-like shape, the structural diversity of assemblies is mostly restricted to dimeric and hexameric capsules. Previously, we reported a spontaneous heteroleptic complexation strategy based on a pair of self-recognizable terpyridine-based ligands and CdII ions. Building on this complementary ligand pairing system, herein three types of nanocapsules, including a dimeric capsule, a Sierpiński triangular prism, and a cubic star, could be readily obtained through dynamic complexation reactions between a tetratopic cavitand-based ligand and various multitopic counterparts in the presence of CdII ions. The dimeric capsular assemblies display the spacer-length-dependent self-sorting behavior in a four-component system. Moreover, the precise multicomponent self-assembly of a Sierpiński triangular prism and a cubic star possessing three and six cavitand-based motifs, respectively, demonstrates that such self-assembly methodology is able to efficiently enhance architectural complexity for calix[4]­resorcinarene-containing metallo-supramolecules.