jp8b07455_si_001.pdf (549.72 kB)

Mechanism of Proton-Coupled Electron Transfer in the S0‑to‑S1 Transition of Photosynthetic Water Oxidation As Revealed by Time-Resolved Infrared Spectroscopy

Download (549.72 kB)
journal contribution
posted on 25.09.2018 by Tatsuki Shimizu, Miwa Sugiura, Takumi Noguchi
Photosynthetic water oxidation takes place at the Mn4CaO5 cluster in photosystem II through a light-driven cycle of intermediates called S states (S0–S4). To unravel the mechanism of water oxidation, it is essential to understand the coupling of electron- and proton-transfer reactions during the S-state transitions. Here, we monitored the reaction process in the S0 → S1 transition using time-resolved infrared (TRIR) spectroscopy. The TRIR signals of the pure contribution of the S0 → S1 transition was obtained by measurement upon a flash after dark adaptation following three flashes. The S0 → S1 traces at the vibrational frequencies of carboxylate groups and hydrogen bond networks around the Mn4CaO5 cluster showed a single phase with a time constant of ∼45 μs. A relatively small H/D kinetic isotope effect of ∼1.2 together with the absence of a slower phase suggests that proton release is coupled with electron transfer, which is a rate-limiting step. The high rate of proton-coupled electron transfer, which is even higher than pure electron transfer in the S1 → S2 transition, is consistent with the previous theoretical prediction that a hydroxo bridge of the Mn4CaO5 cluster gives rise to barrierless deprotonation upon S1 formation through a strongly hydrogen-bonded water molecule.