nl200209m_si_001.pdf (47.39 kB)

Manipulation of Electron Orbitals in Hard-Wall InAs/InP Nanowire Quantum Dots

Download (47.39 kB)
journal contribution
posted on 13.04.2011 by Stefano Roddaro, Andrea Pescaglini, Daniele Ercolani, Lucia Sorba, Fabio Beltram
We present a novel technique for the manipulation of the energy spectrum of hard-wall InAs/InP nanowire quantum dots. By using two local gate electrodes, we induce a strong transverse electric field in the dot and demonstrate the controlled modification of its electronic orbitals. Our approach allows us to dramatically enhance the single-particle energy spacing between the first two quantum levels in the dot and thus to increment the working temperature of our InAs/InP single-electron transistors. Our devices display a very robust modulation of the conductance even at liquid nitrogen temperature, while allowing an ultimate control of the electron filling down to the last free carrier. Potential further applications of the technique to time-resolved spin manipulation are also discussed.