am7b02433_si_001.pdf (3.73 MB)

Ionic Gel Paper with Long-Term Bendable Electrical Robustness for Use in Flexible Electroluminescent Devices

Download (3.73 MB)
journal contribution
posted on 25.04.2017 by Minghui He, Kaili Zhang, Guangxue Chen, Junfei Tian, Bin Su
Conductive paper has low-cost, lightweight, sustainability, easy scale-up, and tailorable advantages, allowing for its promising potential in flexible electronics, such as bendable supercapacitors, solar cells, electromagnetic shields, and actuators. Ionic gels, exhibiting a lower Young’s modulus together with facile manufacturing, can fully serve as the conductive component to prepare conductive paper. Herein we report a low-cost (∼1.3 dollars/m2), continuous, and high-throughput (up to ∼30 m/min) fabrication of reliable and long-term (stable for more than two months) conductive paper. As-prepared conductive paper shows a high electrical durability with negligible bending–recovering signal changes over 5000 cycles. Using this ionic gel paper (IGP) as a key component, we build a variety of proof-of-principle demonstrations to show the capacity of IGP in constructing flexible electroluminescent devices with diverse patterns, including a square, an alphabetic string, and a laughing face. Our methodology has the potential to open a new powerful route to fabricate bendable conductive paper for a myriad of applications in future flexible electronics.

History

Exports