mp0c00390_si_001.pdf (27.27 kB)

Inhalable Nanocomposite Microparticles with Enhanced Dissolution and Superior Aerosol Performance

Download (27.27 kB)
journal contribution
posted on 24.07.2020, 19:04 by Chune Zhu, Jianting Chen, Shihui Yu, Chailu Que, Lynne S. Taylor, Wen Tan, Chuanbin Wu, Qi Tony Zhou
Previous studies have shown that combining colistin (Col), a cationic polypeptide antibiotic, with ivacaftor (Iva), a cystic fibrosis (CF) drug, could achieve synergistic antibacterial effects against Pseudomonas aeruginosa. The purpose of this study was to develop dry powder inhaler formulations for co-delivery of Col and Iva, aiming to treat CF and lung infection simultaneously. In order to improve solubility and dissolution for the water-insoluble Iva, Iva was encapsulated into bovine serum albumin (BSA) nanoparticles (Iva-BSA-NPs). Inhalable composite microparticles of Iva-BSA-NPs were produced by spray-freeze-drying using water-soluble Col as the matrix material and l-leucine as an aerosol enhancer. The optimal formulation showed an irregularly shaped morphology with fine particle fraction (FPF) values of 73.8 ± 5.2% for Col and 80.9 ± 4.1% for Iva. Correlations between “D×ρtapped” and FPF were established for both Iva and Col. The amorphous solubility of Iva is 66 times higher than the crystalline solubility in the buffer. Iva-BSA-NPs were amorphous and remained in the amorphous state after spray-freeze-drying, as examined by powder X-ray diffraction. In vitro dissolution profiles of the selected DPI formulation indicated that Col and Iva were almost completely released within 3 h, which was substantially faster regarding Iva release than the jet-milled physical mixture of the two drugs. In summary, this study developed a novel inhalable nanocomposite microparticle using a synergistic water-soluble drug as the matrix material, which achieved reduced use of excipients for high-dose medications, improved dissolution rate for the water-insoluble drug, and superior aerosol performance.