se8b00311_si_001.pdf (892.2 kB)

Expanding the Scope of Protein-Detecting Electrochemical DNA “Scaffold” Sensors

Download (892.2 kB)
journal contribution
posted on 07.06.2018 by Di Kang, Claudio Parolo, Sheng Sun, Nathan E. Ogden, Frederick W. Dahlquist, Kevin W. Plaxco
The ability to measure the levels of diagnostically relevant proteins, such as antibodies, directly at the point of care could significantly impact healthcare. Thus motivated, we explore here the E-DNA “scaffold” sensing platform, a rapid, convenient, single-step means to this end. These sensors comprise a rigid nucleic acid “scaffold” attached via a flexible linker to an electrode and modified on its distal end with a redox reporter and a protein binding “recognition element”. The binding of a targeted protein reduces the efficiency with which the redox reporter approaches the electrode, resulting in an easily measured signal change when the sensor is interrogated voltammetrically. Previously we have demonstrated scaffold sensors employing a range of low molecular weight haptens and linear peptides as their recognition elements. Expanding on this here we have characterized sensors employing much larger recognition elements (up to and including full length proteins) in order to (1) define the range of recognition elements suitable for use in the platform; (2) better characterize the platform’s signaling mechanism to aid its design and optimization; and (3) demonstrate the analytical performance of sensors employing full-length proteins as recognition elements. In doing so we have enlarged the range of molecular targets amenable to this rapid and convenient sensing platform.

History

Exports