nl060199z_si_001.pdf (47.97 kB)

Exciton Recombination Dynamics in CdSe Nanowires:  Bimolecular to Three-Carrier Auger Kinetics

Download (47.97 kB)
journal contribution
posted on 12.07.2006 by István Robel, Bruce A. Bunker, Prashant V. Kamat, Masaru Kuno
Ultrafast relaxation dynamics of charge carriers in CdSe quantum wires with diameters between 6 and 8 nm are studied as a function of carrier density. At high electron−hole pair densities above 1019 cm-3 the dominant process for carrier cooling is the “bimolecular” Auger recombination of one-dimensional (1D) excitons. However, below this excitation level an unexpected transition from a bimolecular (exciton−exciton) to a three-carrier Auger relaxation mechanism occurs. Thus, depending on excitation intensity, electron−hole pair relaxation dynamics in the nanowires exhibit either 1D or 0D (quantum dot) character. This dual nature of the recovery kinetics defines an optimal intensity for achieving optical gain in solution-grown nanowires given the different carrier-density-dependent scaling of relaxation rates in either regime.