es6b02717_si_001.pdf (2.76 MB)

Eutrophication Increases Phytoplankton Methylmercury Concentrations in a Coastal SeaA Baltic Sea Case Study

Download (2.76 MB)
journal contribution
posted on 05.10.2016 by Anne. L. Soerensen, Amina T. Schartup, Erik Gustafsson, Bo G. Gustafsson, Emma Undeman, Erik Björn
Eutrophication is expanding worldwide, but its implication for production and bioaccumulation of neurotoxic monomethylmercury (MeHg) is unknown. We developed a mercury (Hg) biogeochemical model for the Baltic Sea and used it to investigate the impact of eutrophication on phytoplankton MeHg concentrations. For model evaluation, we measured total methylated Hg (MeHgT) in the Baltic Sea and found low concentrations (39 ± 16 fM) above the halocline and high concentrations in anoxic waters (1249 ± 369 fM). To close the Baltic Sea MeHgT budget, we inferred an average normoxic water column HgII methylation rate constant of 2 × 10–4 d–1. We used the model to compare Baltic Sea’s present-day (2005–2014) eutrophic state to an oligo/mesotrophic scenario. Eutrophication increases primary production and export of organic matter and associated Hg to the sediment effectively removing Hg from the active biogeochemical cycle; this results in a 27% lower present-day water column Hg reservoir. However, increase in organic matter production and remineralization stimulates microbial Hg methylation resulting in a seasonal increase in both water and phytoplankton MeHg reservoirs above the halocline. Previous studies of systems dominated by external MeHg sources or benthic production found eutrophication to decrease MeHg levels in plankton. This Baltic Sea study shows that in systems with MeHg production in the normoxic water column eutrophication can increase phytoplankton MeHg content.