ac6b02353_si_001.pdf (755.83 kB)

Decoration of Reduced Graphene Oxide Nanosheets with Aryldiazonium Salts and Gold Nanoparticles toward a Label-Free Amperometric Immunosensor for Detecting Cytokine Tumor Necrosis Factor‑α in Live Cells

Download (755.83 kB)
journal contribution
posted on 07.09.2016 by Meng Qi, Yin Zhang, Chaomin Cao, Mingxing Zhang, Shenghua Liu, Guozhen Liu
In this study, a label-free electrochemical immunosensor was developed for detection of cytokine tumor necrosis factor-alpha (TNF-α). First, AuNPs loaded reduced graphene oxides nanocomposites (RGO-ph-AuNP) were prepared, and then, a mixed layer of 4-carbxyphenyl and 4-aminophenyl phosphorylcholine (PPC) was modified to the surface of AuNPs for the subsequent modification of anti-TNF-α capture antibody (Ab1) to form the capture surface (Au-RGO-ph-AuNP-ph-PPC­(-ph-COOH)) for the analyte TNF-α with the antifouling property. For reporting the presence of analyte, the anti-TNF-α detection antibody (Ab2) was modified to the graphene oxides which have been modified with the 4-ferrocenylaniline through diazonium chemistry to form Ab2-GO-ph-Fc. Then, a sandwich assay was formed on gold surfaces for the quantitative detection of TNF-α based on the electrochemical signal of ferrocene. X-ray photoelectron spectra (XPS), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV–vis, and electrochemistry were used for characterization of the stepwise fabrications on the interface. The prepared electrochemical immunosensor was successfully used for the detection of TNF-α over the range of 0.1–150 pg mL–1. The lowest detection limit of this immunosensor is 0.1 pg mL–1 TNF-α in 50 mM phosphate buffer at pH 7.0. The fabricated immunosensor provided high selectivity and stability and can be used to detect TNF-α secreted by live BV-2 cells with comparable accuracy to enzyme-linked immunosorbent assay (ELISA) but with lower limit of detection.