jp506296j_si_001.pdf (287.44 kB)

Crystallization-Induced Energy Level Change of [6,6]-Phenyl‑C61-Butyric Acid Methyl Ester (PCBM) Film: Impact of Electronic Polarization Energy

Download (287.44 kB)
journal contribution
posted on 08.01.2015 by Yufei Zhong, Seiichiro Izawa, Kazuhito Hashimoto, Keisuke Tajima, Tomoyuki Koganezawa, Hiroyuki Yoshida
The effect of thermal annealing on the energy levels of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) films was investigated using ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and low-energy inverse photoemission spectroscopy. We observed that thermal annealing at 150 °C induces reductions of both the ionization potential (IP) and the electron affinity (EA) with a narrowing of the band gap by 0.1 eV. These changes are associated with crystallization and a 2.54% reduction in the film thickness. Precise measurements of both the IP and EA enabled an evaluation of the effects of the electronic polarization energy in a model based on the charge localized in a single PCBM molecule.

History

Exports