cm9b02413_si_001.pdf (907.04 kB)

Cinnamate-Functionalized Natural Carbohydrates as Photopatternable Gate Dielectrics for Organic Transistors

Download (907.04 kB)
journal contribution
posted on 23.08.2019 by Zhi Wang, Xinming Zhuang, Yao Chen, Binghao Wang, Junsheng Yu, Wei Huang, Tobin J. Marks, Antonio Facchetti
Photolithographic-defined films play an important role in modern optoelectronics and are crucial for the development of advanced organic thin-film transistors (OTFTs). Here, we explore a facile photoresist-free photopatterning technique with natural carbohydrates and its use as an OTFT gate dielectric. The effects of the cross-linkable chemical structure on the cross-linking chemistry and dielectric strength of the corresponding films are investigated in cinnamate-functionalized carbohydrates from monomeric (glucose) to dimeric (sucrose) to polymeric (cellulose) backbones. UV illumination of the cinnamate esters of these carbohydrates leads to [2 + 2] cycloaddition and thus the formation of robust cross-linked dielectric films in the irradiated areas. Using propylene glycol monomethyl ether acetate as the solvent/developer, patterned dielectric films with micrometer-sized features can be readily fabricated. P- and N-type OTFTs are successfully demonstrated using unpatterned/patterned cross-linked films as the gate dielectric and pentacene and N,N′-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN2) as the p- and n-channel semiconducting layers, respectively. These results demonstrate that natural-derived polymer gate dielectrics, which are soluble and patternable using biomass-derived solvents, are promising for the realization of a more sustainable OTFT technology.