es202571k_si_001.pdf (1.2 MB)

CO2 Sequestration through Mineral Carbonation of Iron Oxyhydroxides

Download (1.2 MB)
journal contribution
posted on 22.02.2016 by Kristin Lammers, Riley Murphy, Amber Riendeau, Alexander Smirnov, Martin A. A. Schoonen, Daniel R. Strongin
Carbon dioxide sequestration via the use of sulfide reductants and mineral carbonation of the iron oxyhydroxide polymorphs lepidocrocite, goethite, and akaganeite with supercritical CO2 (scCO2) was investigated using in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The exposure of the different iron oxyhydroxides to aqueous sulfide in contact with scCO2 at ∼70–100 °C resulted in the partial transformation of the minerals to siderite (FeCO3) and sulfide phases such as pyrite (FeS2). The relative yield of siderite to iron sulfide bearing mineral product was a strong function of the initial sulfide concentration. The order of mineral reactivity with regard to the amount of siderite formation in the scCO2/sulfide environment for a specific reaction time was goethite < lepidocrocite ≤ akaganeite. Given the presence of goethite in sedimentary formations, this conversion reaction may have relevance to the subsurface sequestration and geologic storage of carbon dioxide.

History

Exports