nn9b07173_si_001.pdf (1.2 MB)
0/0

Bioactive Anti-inflammatory, Antibacterial, Antioxidative Silicon-Based Nanofibrous Dressing Enables Cutaneous Tumor Photothermo-Chemo Therapy and Infection-Induced Wound Healing

Download (1.2 MB)
journal contribution
posted on 27.02.2020 by Yuewei Xi, Juan Ge, Min Wang, Mi Chen, Wen Niu, Wei Cheng, Yumeng Xue, Cai Lin, Bo Lei
Traditional skin tumor surgery and chronic bacterial-infection-induced wound healing/skin regeneration is still a challenge. The ideal strategy should eliminate the tumor, enhance wound healing/skin formation, and be anti-infection. Herein, we designed a multifunctional elastomeric poly­(l-lactic acid)–poly­(citrate siloxane)–curcumin@polydopamine hybrid nanofibrous scaffold (denoted as PPCP matrix) for tumor-infection therapy and infection-induced wound healing. The PPCP matrix showed intrinsically multifunctional properties including antioxidative, anti-inflammatory, photothermal, antibacterial, anticancer, and angiogenesis bioactivities. The polydopamine/curcumin presented an excellent near-infrared photothermal/cancer cell toxicity capacity, respectively, which supported PPCP for synergetic skin tumor therapy and antibacterial properties in vitro/in vivo. Additionally, the PPCP nanofibrous matrix significantly promotes the adhesion and proliferation of normal skin cells and accelerates the cutaneous wound healing in normal mice and bacterial-infected mice by enhancing the early angiogenesis. The PPCP nanofibrous matrix with multifunctional bioactivities provides a competitive strategy for skin tumor and bacterial-infection-induced wound healing.

History

Exports