ao9b03242_si_001.pdf (407.03 kB)

Amphoteric Soy Protein-Rich Fibers for Rapid and Selective Adsorption and Desorption of Ionic Dyes

Download (407.03 kB)
journal contribution
posted on 23.12.2019 by Xingchen Liu, You-Lo Hsieh
Uniquely amphoteric soy protein (SP)-rich ultra-fine fibers (231 nm average diameter) have been facilely electrospun from aq. colloids and rendered water-insoluble by heating (150 °C, 12 h) to be highly stable over 14 d (pH 7) as well as under extremely acidic to basic (pH 0–10, 2 d) or at boil (2 h) conditions. The SP-rich fibrous membranes are easily tuned to be charged either negatively by deprotonation above or positively by protonation below the 4.5 PI of SPs. This pH-responsive amphoterism has been demonstrated for rapid adsorption of either cationic or anionic dyes, selective adsorption of either dye from their mixtures, and repetitive adsorption/desorption to recover and reuse both dyes and membranes. Chemisorption and heterogeneous adsorption of ionic dyes was confirmed by close fitting to the pseudo-second-order kinetic model (R2 = 0.9977–0.9999) and Freundlich adsorption isotherm (R2 = 0.9879). This is the first report of water-resilient and pH-robust ultrafine fibrous membranes fabricated from aqueous colloids of neat globular SPs, the major byproducts of under-utilized edible oil and biodiesel. The natural polyampholyte origin, amphoterism, and green processing make these fibrous materials unique and versatile for many potential applications involving both anionic and cationic species.