ja050150f_si_002.pdf (25.93 kB)

Ag4V2O6F2:  An Electrochemically Active and High Silver Density Phase

Download (25.93 kB)
journal contribution
posted on 04.05.2005 by Erin M. Sorensen, Heather K. Izumi, John T. Vaughey, Charlotte L. Stern, Kenneth R. Poeppelmeier
Low-temperature hydrothermal techniques were used to synthesize single crystals of Ag4V2O6F2. This previously unreported oxide fluoride phase was characterized by single-crystal X-ray diffraction and IR spectroscopy and was also evaluated as a primary lithium battery cathode. Crystal data:  monoclinic, space group P21/n (No. 14), with a = 8.4034(4) Å, b = 10.548(1) Å, c = 12.459(1) Å, β = 90.314(2)°, and Z = 4. Ag4V2O6F2 (SVOF) exhibits two characteristic regions within the discharge curve, an upper plateau at 3.5 V, and a lower sloped region around 2.3 V from reduction of the vanadium oxide fluoride framework. The material has a nominal capacity of 251 mAh/g, with 148 mAh/g above 3 V. The upper discharge plateau at 3.5 V is nearly 300 mV over the silver reduction potential of the commercial primary battery material, Ag2V4O11 (SVO).