cn1c00303_si_003.xlsx (466.08 kB)
Wide-Ranging Effects on the Brain Proteome in a Transgenic Mouse Model of Alzheimer’s Disease Following Treatment with a Brain-Targeting Somatostatin Peptide
dataset
posted on 2021-06-25, 15:10 authored by Fadi Rofo, Friederike A. Sandbaumhüter, Aikaterini Chourlia, Nicole G. Metzendorf, Jamie I. Morrison, Stina Syvänen, Per E. Andrén, Erik T. Jansson, Greta HultqvistAlzheimer’s
disease is the most common neurodegenerative
disorder characterized by the pathological aggregation of amyloid-β
(Aβ) peptide. A potential therapeutic intervention in Alzheimer’s
disease is to enhance Aβ degradation by increasing the activity
of Aβ-degrading enzymes, including neprilysin. The somatostatin
(SST) peptide has been identified as an activator of neprilysin. Recently,
we demonstrated the ability of a brain-penetrating SST peptide (SST-scFv8D3)
to increase neprilysin activity and membrane-bound Aβ42 degradation
in the hippocampus of mice overexpressing the Aβ-precursor protein
with the Swedish mutation (APPswe). Using LC–MS, we further
evaluated the anti-Alzheimer’s disease effects of SST-scFv8D3.
Following a triple intravenous injection of SST-scFv8D3, the LC–MS
analysis of the brain proteome revealed that the majority of downregulated
proteins consisted of mitochondrial proteins regulating fatty acid
oxidation, which are otherwise upregulated in APPswe mice compared
to wild-type mice. Moreover, treatment with SST-scFv8D3 significantly
increased hippocampal levels of synaptic proteins regulating cell
membrane trafficking and neuronal development. Finally, hippocampal
concentrations of growth-regulated α (KC/GRO) chemokine and
degradation of neuropeptide-Y were elevated after SST-scFv8D3 treatment.
In summary, our results demonstrate a multifaceted effect profile
in regulating mitochondrial function and neurogenesis following treatment
with SST-scFv8D3, further suggesting the development of Alzheimer’s
disease therapies based on SST peptides.