American Chemical Society
nz0c02344_si_002.cif (89.49 kB)

Unravelling the Behavior of Dion–Jacobson Layered Hybrid Perovskites in Humid Environments

Download (89.49 kB)
posted on 2020-12-31, 17:33 authored by Algirdas Dučinskas, Gee Yeong Kim, Davide Moia, Alessandro Senocrate, Ya-Ru Wang, Michael A. Hope, Aditya Mishra, Dominik J. Kubicki, Miłosz Siczek, Wojciech Bury, Thomas Schneeberger, Lyndon Emsley, Jovana V. Milić, Joachim Maier, Michael Grätzel
Layered hybrid halide perovskites are known to be more environmentally stable than their 3D analogues. The enhanced stability is particularly relevant for Dion–Jacobson-type layered perovskites due to their promising photovoltaic performances. However, in contrast to the expected resilience to moisture, we reveal that the structure of Dion–Jacobson perovskite phases based on a 1,4-phenylenedimethanammonium spacer is disrupted in humid conditions using X-ray diffraction, UV–vis spectroscopy, thermogravimetric analysis, and solid-state NMR spectroscopy. The process takes place at ≥65 ± 5% relative humidity, with a time scale on the order of minutes. The original layered structure can be restored upon annealing and the hydration can be suppressed by postsynthetic annealing in air, which is attributed to the generation of a self-protective layer of PbI2. This study thereby reveals a unique behavior of layered perovskites in humid environments, which is critical to their stabilizing role in perovskite devices.