posted on 2022-05-02, 20:14authored byDennis Svatunek, Martin Wilkovitsch, Lea Hartmann, K. N. Houk, Hannes Mikula
The tetrazine/trans-cyclooctene ligation stands
out from the bioorthogonal toolbox due to its exceptional reaction
kinetics, enabling multiple molecular technologies in vitro and in
living systems. Highly reactive 2-pyridyl-substituted tetrazines have
become state of the art for time-critical processes and selective
reactions at very low concentrations. It is widely accepted that the
enhanced reactivity of these chemical tools is attributed to the electron-withdrawing
effect of the heteroaryl substituent. In contrast, we show that the
observed reaction rates are way too high to be explained on this basis.
Computational investigation of this phenomenon revealed that distortion
of the tetrazine caused by intramolecular repulsive N–N interaction
plays a key role in accelerating the cycloaddition step. We show that
the limited stability of tetrazines in biological media strongly correlates
with the electron-withdrawing effect of the substituent, while intramolecular
repulsion increases the reactivity without reducing the stability.
These fundamental insights reveal thus far overlooked mechanistic
aspects that govern the reactivity/stability trade-off for tetrazines
in physiologically relevant environments, thereby providing a new
strategy that may facilitate the rational design of these bioorthogonal
tools.