American Chemical Society
ma7b01738_si_002.cif (396.95 kB)

Two-Dimensional Conjugated Polymer Based on sp2‑Carbon Bridged Indacenodithiophene for Efficient Polymer Solar Cells

Download (396.95 kB)
posted on 2017-10-06, 14:20 authored by Yijing Guo, Miao Li, Yuanyuan Zhou, Jinsheng Song, Zhishan Bo, Hua Wang
Molecular electronic structure plays a vital role in the photovoltaic performances in polymer solar cells (PSCs) due to their influences on light-harvesting, charge carrier transfer, π–π stacking, etc. Indacenodithiophene as a star unit has been well studied in PSCs; various structural derivation methods have been tried, but they are still not efficient in improvement of power conversion efficiencies (PCE) due to the narrow optical absorptions. In this contribution, a novel planar DMIDT with extended lateral π-electron delocalization is efficiently synthesized via introduction of sp2 hybrid carbons as the bridge atoms. Based on this novel building block, a two-dimensional conjugated polymer PDMIDT-TPD is prepared, and the unique structure improves the conjugation at the lateral direction, enlarges the electron delocalization area, and greatly broadens the absorption spectrum with a full coverage from 350 to 700 nm. Finally, a PCE of 8.26% is achieved when blended with PC71BM, which is the highest result among the IDT-based polymer donors. Meanwhile, PDMIDT-TPD also presents good compatibility with the non-fullerene acceptor, and a preliminary PCE of 6.88% is obtained. In all, this work not only provides an excellent donor material but also offers a general and simple derivation strategy for fused aromatic building blocks.