American Chemical Society
Browse
ja0c01069_si_002.cif (822.46 kB)

The Mechanism of Rhodium-Catalyzed Allylic C–H Amination

Download (822.46 kB)
dataset
posted on 2020-03-13, 12:33 authored by Robert J. Harris, Jiyong Park, Taylor A. F. Nelson, Nafees Iqbal, Daniel C. Salgueiro, John Bacsa, Cora E. MacBeth, Mu-Hyun Baik, Simon B. Blakey
Herein, the mechanism of catalytic allylic C–H amination reactions promoted by Cp*Rh complexes is reported. Reaction kinetics experiments, stoichiometric studies, and DFT calculations demonstrate that the allylic C–H activation to generate a Cp*Rh­(π–allyl) complex is viable under mild reaction conditions. The role of external oxidants in the catalytic cycle is elucidated. Quantum mechanical calculations, stoichiometric reactions, and cyclic voltammetry experiments concomitantly support an oxidatively induced reductive elimination process of the allyl fragment with an acetate ligand proceeding through a Rh­(IV) intermediate. Stoichiometric oxidation and bulk electrolysis of the proposed π–allyl intermediate are also reported to support these analyses. Lastly, evidence supporting the amination of an allylic acetate intermediate is presented. We show that Cp*Rh­(III)2+ behaves as a Lewis acid catalyst to complete the allylic amination reaction.

History