posted on 2015-11-02, 00:00authored byDawei Yang, Yang Li, Baomin Wang, Xiangyu Zhao, Linan Su, Si Chen, Peng Tong, Yi Luo, Jingping Qu
Interaction of a diiron thiolate-bridged
complex, [Cp*Fe(μ-η2:η4-bdt)FeCp*] (1) (Cp* = η5-C5Me5; bdt = benzene-1,2-dithiolate) with a proton
gives an FeIIIFeIII hydride bridged complex,
[Cp*Fe(μ-bdt)(μ-H)FeCp*][BF4] (3[BF4]). According to in situ variable temperature 1H NMR studies,
the formation of 3[BF4] was evidenced to occur through a stepwise pathway: protonation occurring
at an iron center to produce terminal hydride [Cp*Fe(μ-bdt)(t-H)FeCp*][BF4] (2) and subsequent
intramolecular isomerization to bridging hydride 3[BF4]. A one-electron reduction
of 3[BF4] by CoCp2 affords a paramagnetic mixed-valent FeIIFeIII hydride complex, [Cp*Fe(μ-η2:η2-bdt)(μ-H)FeCp*] (4).
Further, studies on protonation processes of diruthenium and iron–ruthenium
analogues of 1, [Cp*M1(μ-bdt)M2Cp*]
(M1 = M2 = Ru, 5; M1 = Fe, M2 = Ru, 8),
provide experimental evidence for terminal hydride species at these
bdt systems. Importantly, diiron or diruthenium hydride bridged complexes 3[BF4], 7[BF4] and iron–ruthenium
heterodinuclear complex 8[PF6] can realize electrocatalytic hydrogen evolution.