jo101701k_si_002.cif (16.32 kB)

Synthesis, Self-Assembly, and Charge Transporting Property of Contorted Tetrabenzocoronenes

Download (16.32 kB)
dataset
posted on 03.12.2010 by Xiaojie Zhang, Xiaoxia Jiang, Kai Zhang, Lu Mao, Jing Luo, Chunyan Chi, Hardy Sze On Chan, Jishan Wu
A facile route has been developed for the preparation of a new family of contorted 1.2,3.4,7.8,9.10-tetrabenzocoronenes (TBCs). A two-step cyclization reaction, i.e., oxidative photocyclization followed by FeCl3-mediated intramolecular cyclodehydrogenation, was carried out on the olefin precursors to obtain the final TBC compounds. These new TBC molecules have contorted conformation due to steric overcrowding as disclosed by single-crystal crystallographic analysis. Nevertheless, they showed extended π-conjugation compared with coronene and exhibited strong aggregation in solution. The thermal behavior and self-assembly of TBC-C8 in solid were studied by a combination of thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM). Compound TBC-C8 showed very good thermal and photostability and exhibited long-range ordered π-stacking in the bulk state. Moreover, uniform nanofibers with tens of micrometer length are formed in the drop-casted thin films. TBC-C8 also possesses a desirable HOMO energy level (−5.10 eV), which allows efficient charge injection from electrodes such as gold electrode. The charge carrier mobilities were determined by using the space-charge limited-current (SCLC) technique and high average hole mobility of 0.61 cm2 V−1 s−1 was obtained for TBC-C8.

History

Exports