posted on 2020-05-12, 13:04authored byLindsey Burggraaff, Eelke B. Lenselink, Willem Jespers, Jesper van Engelen, Brandon J. Bongers, Marina Gorostiola González, Rongfang Liu, Holger H. Hoos, Herman W. T. van Vlijmen, Adriaan P. IJzerman, Gerard J. P. van Westen
Kinases are frequently
studied in the context of anticancer drugs.
Their involvement in cell responses, such as proliferation, differentiation,
and apoptosis, makes them interesting subjects in multitarget drug
design. In this study, a workflow is presented that models the bioactivity
spectra for two panels of kinases: (1) inhibition of RET, BRAF, SRC,
and S6K, while avoiding inhibition of MKNK1, TTK, ERK8, PDK1, and
PAK3, and (2) inhibition of AURKA, PAK1, FGFR1, and LKB1, while avoiding
inhibition of PAK3, TAK1, and PIK3CA. Both statistical and structure-based
models were included, which were thoroughly benchmarked and optimized.
A virtual screening was performed to test the workflow for one of
the main targets, RET kinase. This resulted in 5 novel and chemically
dissimilar RET inhibitors with remaining RET activity of <60% (at
a concentration of 10 μM) and similarities with known RET inhibitors
from 0.18 to 0.29 (Tanimoto, ECFP6). The four more potent inhibitors
were assessed in a concentration range and proved to be modestly active
with a pIC50 value of 5.1 for the most active compound.
The experimental validation of inhibitors for RET strongly indicates
that the multitarget workflow is able to detect novel inhibitors for
kinases, and hence, this workflow can potentially be applied in polypharmacology
modeling. We conclude that this approach can identify new chemical
matter for existing targets. Moreover, this workflow can easily be
applied to other targets as well.