ic000976c_si_001.cif (107.79 kB)
Download fileStructural, Computational, and 59Co NMR Studies of Primary and Secondary Amine Complexes of Co(III) Porphyrins
dataset
posted on 2001-05-25, 00:00 authored by Orde Q. Munro, Sibongiseni C. Shabalala, Nicola J. BrownFour novel low-spin bis(amine) Co(III) porphyrins [Co(TPP)(BzNH2)2](SbF6), 1, [Co(TPP)(1-BuNH2)2](SbF6),
2, [Co(TPP)(PhCH2CH2NH2)2](SbF6), 3, and [Co(TPP)(1-MePipz)2](SbF6), 4, have been synthesized and
characterized by low-temperature X-ray crystallography, IR, electronic, and NMR (1H, 13C, and 59Co) spectroscopy.
The mean Co−Np distance for the four structures is 1.986(1) Å. The Co−Nax distances for the 1° amine derivatives
average to 1.980(5) Å; the axial bonds of the 2° amine derivative are significantly longer, averaging 2.040(1) Å.
The porphyrin core conformation of 4 is significantly nonplanar (mixture of S4-ruf and D2d-sad distortions) due
to a staggered arrangement of the axial ligands over the porphyrin core and meso-phenyl group orientations
< 90°. The X-ray structures have been used with the coordinates for [Co(TPP)(Pip)2](NO3) (Scheidt et al. J. Am.
Chem. Soc. 1973, 95, 8289−8294.) to parametrize a molecular mechanics (MM) force field for bis(amine)
complexes of Co(III) porphyrins. The calculations show that two types of crystal packing interactions (van der
Waals and hydrogen bonding) largely control the crystallographically observed conformations. Gas phase
conformational energy surfaces have been computed for these complexes by dihedral angle driving methods and
augmented with population distributions calculated by MD simulations at 298 K; the calculations demonstrate
that the bis(1° amine) complexes are significantly more flexible than the bis(2° amine) analogues. 59Co NMR
spectra have been acquired for a range of [Co(TPP)(amine)2]Cl derivatives as a function of temperature. The
59Co chemical shifts increase linearly with increasing temperature due to population of thermally excited vibrational
levels of the 1A1 ground state. Activation energies for molecular reorientation (tumbling) have been determined
from an analysis of the 59Co NMR line widths as a function of 1/T; lower barriers exist for the conformationally
rigid 2° amine derivatives (2.6−3.8 kJ mol-1). The 59Co chemical shifts vary linearly with the DFT-calculated
radial expectation values 〈r-3〉3d for the Co(III) ion. The correlation leads to the following order for the σ-donor
strengths of the axial ligands: BzNH2 ≥ Cl- > 1-BuNH2 > PhCH2CH2NH2 > 1-Bu2NH > Et2NH. The 59Co
NMR line widths are proportional to the square of the DFT-calculated valence electric field gradient at the Co
nucleus. Importantly, this is the first computational rationalization of the 59Co NMR spectra of Co(III) porphyrins.
History
Usage metrics
Read the peer-reviewed publication
Categories
Keywords
Et 2 NHCo nucleus298 KPhCH 2 CH 2 NH 21 ground statepopulation distributionsActivation energiesvan der Waalsphenyl group orientations59 Co NMR Studies59 Cocalculations showMD simulations59 Co chemical shifts increaseÅ.MMforce fieldporphyrin coreporphyrin core conformationgas phaseD 2energy surfacesdihedral angle59 Co NMR line widthsfield gradientSecondary Amine Complexes1 H13 CS 459 Co NMR spectraCl derivativesIR59 Co chemical shiftsvibrational levels