ja7b07598_si_004.cif (4.22 MB)
Download file

Step-Economical Photoassisted Diversity-Oriented Synthesis: Sustaining Cascade Photoreactions in Oxalyl Anilides to Access Complex Polyheterocyclic Molecular Architectures

Download (4.22 MB)
dataset
posted on 2017-10-20, 00:00 authored by Dmitry M. Kuznetsov, Andrei G. Kutateladze
Atom- and step-economy in photoassisted diversity-oriented synthesis (DOS) is achieved with a versatile oxalyl linker offering rapid access to complex alkaloid mimics in very few experimentally simple steps: (i) it allows for fast tethering of the photoactive core to the unsaturated pendants, especially important in the case of (hetero)­aromatic aminesessentially a one-pot reaction with no isolation of intermediates; (ii) the α-dicarbonyl tether acts as a chromophore enhancer, extending the conjugation chain and facilitating the “harvest” of the lower energy photons for the primary and secondary photoreactions; (iii) it enhances the quantum yield of intersystem crossing (ISC), i.e., it is capable of sensitizing secondary photochemical processes in the cascade; and (iv) the tether forms an additional heterocyclic moiety, imidazolidine-4,5-dione, a known pharmacophore. The overall photoassisted cascade is an efficient complexity-building process as quantified by computed step-normalized complexity indices, leading to extended polyheterocyclic molecular architectures comparable in complexity to natural products such as paclitaxel while requiring only 2–4 simple synthetic steps from readily available chemical feedstock.

History