American Chemical Society
Browse
jz3c00597_si_002.zip (110.09 kB)

Signatures of Reaction Mechanisms Encoded in the Vibrational Population Distribution of Small-Molecule Products: Photodissociation of Symmetric-Triazine Using 266 nm Radiation

Download (110.09 kB)
dataset
posted on 2023-04-11, 20:09 authored by Piyush Mishra, Alexander W. Hull, Stephen L. Coy, Robert W. Field
We utilize rotationally resolved Chirped-Pulse Fourier Transform millimeter-wave spectroscopy to study photodissociation dynamics of 1,3,5-Triazine (symmetric-Triazine) to form 3 HCN molecules. The state-specific vibrational population distribution (VPD) of the photofragments contains mechanistic details of the reaction. This photodissociation is performed using 266 nm radiation transverse to a seeded supersonic jet. The vibrational cooling inefficiency in the jet preserves the VPD of the photofragments, while rotational cooling enhances the signal of low-J pure-rotational transitions. The multiplexed nature of the spectrometer enables simultaneous sampling of several “vibrational satellites” of the J = 1 ← 0 transition of HCN. Excited state populations along the HCN bend (v2) and CN stretch (v3) modes are observed, which show ≥3.2% vibrational excitation of the photofragments. Observation of an at least bimodal VPD, along the even-v states of v2, implies an asymmetric partitioning of vibrational energy among the HCN photofragments. This suggests a sequential dissociation mechanism of symmetric-Triazine initiated by 266 nm radiation.

History