American Chemical Society
pr8b00227_si_005.xlsx (43.86 kB)

Shotgun Proteomics and Quantitative Pathway Analysis of the Mechanisms of Action of Dehydroeffusol, a Bioactive Phytochemical with Anticancer Activity from Juncus effusus

Download (43.86 kB)
posted on 2018-05-29, 00:00 authored by I-Sheng Chang, Lai-King Sy, Bei Cao, Ching Tung Lum, Wai-Lun Kwong, Yi-Man Eva Fung, Chun-Nam Lok, Chi-Ming Che
Dehydroeffusol (DHE) is a phenanthrene isolated from the Chinese medicinal plant Juncus effusus. Biological evaluation of DHE reveals in vitro and in vivo anticancer effects. We performed a shotgun proteomic analysis using liquid chromatography–tandem mass spectrometry to investigate the changes in the protein profiles in cancer cells upon DHE treatment. DHE affected cancer-associated signaling pathways, including NF-κB, β-catenin, and endoplasmic reticulum stress. Through quantitative pathway and key node analysis of the proteomics data, activating transcription factor 2 (ATF-2) and c-Jun kinase (JNK) were found to be the key components in DHE’s modulated biological pathways. Based on the pathway analysis as well as chemical similarity to estradiol, DHE is proposed to be a phytoestrogen. The proteomic, bioinformatic, and chemoinformatic analyses were further verified with individual cell-based experiments. Our study demonstrates a workflow for identifying the mechanisms of action of DHE through shotgun proteomic analysis.