American Chemical Society
nl3c02810_si_004.cif (1.39 kB)

Resolving Multielement Semiconductor Nanocrystals at the Atomic Level: Complete Deciphering of Domains and Order in Complex CuαZnβSnγSeδ (CZTSe) Tetrapods

Download (1.39 kB)
posted on 2024-02-11, 22:03 authored by Huan Ren, Yuanwei Sun, Frank Hoffmann, Matthias Vandichel, Temilade E. Adegoke, Ning Liu, Conor McCarthy, Peng Gao, Kevin M. Ryan
Semiconductor nanocrystals (NCs) with high elemental and structural complexity can be engineered to tailor for electronic, photovoltaic, thermoelectric, and battery applications etc. However, this greater complexity causes ambiguity in the atomic structure understanding. This in turn hinders the mechanistic studies of nucleation and growth, the theoretical calculations of functional properties, and the capability to extend functional design across complementary semiconductor nanocrystals. Herein, we successfully deciphered the atomic arrangements of 4 different nanocrystal domains in CuαZnβSnγSeδ (CZTSe) nanocrystals using crucial zone axis analysis on multiple crystals in different orientations. The results show that the essence of crystallographic progression from binary to multielemental semiconductors is actually the change of theoretical periodicity. This transition is caused by decreased symmetry in the crystal instead of previously assumed crystal deformation. We further reveal that these highly complex crystalline entities have highly ordered element arrangements as opposed to the previous understanding that their elemental orderings are random.