pr3009429_si_009.xls (1.67 MB)
Download file

Quantitative Phosphoproteomic Analysis of Early Alterations in Protein Phosphorylation by 2,3,7,8-Tetrachlorodibenzo‑p‑dioxin

Download (1.67 MB)
posted on 01.02.2013, 00:00 authored by Melanie Schulz, Stefanie Brandner, Carola Eberhagen, Friederike Eckardt-Schupp, Martin R. Larsen, Ulrich Andrae
A comprehensive quantitative analysis of changes in protein phosphorylation preceding or accompanying transcriptional activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in 5L rat hepatoma cells was performed using the SILAC approach. Following exposure of the cells to DMSO or 1 nM TCDD for 0.5 to 2 h, 5648 phosphorylated peptides corresponding to 2156 phosphoproteins were identified. Eight peptides exhibited a statistically significantly altered phosphorylation because of TCDD exposure and 22 showed a regulation factor of ≥1.5 in one of the experiments per time point. The vast majority of the TCCD-induced phosphorylation changes had not been reported before. The transcription factor ARNT, the obligate partner for gene activation by the TCDD-bound Ah receptor, exhibited an up-regulation of its Ser77 phosphorylation, a modification known to control the differential binding of ARNT homodimers and heterodimers to different enhancers suggesting that this phosphorylation represents a novel mechanism contributing to the alteration of gene expression by TCDD. Other proteins with altered phosphorylation included, among others, various transcriptional coregulators previously unknown to participate in TCDD-induced gene activation, regulators of small GTPases of the Ras superfamily, UBX domain-containing proteins and the oncogenic protein LYRIC. The results open up new directions for research on the molecular mechanisms of dioxin action and toxicity.