Recoding refers to the reprogramming of mRNA translation
by nonstandard
read-out rules. In this study, we used stable isotope labeling with
amino acids in cell culture (SILAC) technology to investigate the
proteome of host-adapted Salmonella serovars, which
are characteristic of accumulation of pseudogenes. Interestingly,
a few annotated pseudogenes were indeed able to express peptides downstream
of the inactivation site,
suggesting the occurrence of recoding. Two mechanisms of recoding,
namely, programmed frameshifting and codon redefinition, were both
found. We believe that the phenomena of recoding are not rare in bacteria.
More studies are required for a better understanding of bacterial
translation and the implication of pseudogene recoding in Salmonella serovars.