ac300844d_si_001.xls (108.5 kB)

Protocol for an Electrospray Ionization Tandem Mass Spectral Product Ion Library: Development and Application for Identification of 240 Pesticides in Foods

Download (108.5 kB)
posted on 20.02.2016 by Kai Zhang, Jon W. Wong, Paul Yang, Douglas G. Hayward, Takeo Sakuma, Yunyun Zou, André Schreiber, Christopher Borton, Tung-Vi Nguyen, Banerjee Kaushik, Dasharath Oulkar
Modern determination techniques for pesticides must yield identification quickly with high confidence for timely enforcement of tolerances. A protocol for the collection of liquid chromatography (LC) electrospray ionization (ESI)–quadruple linear ion trap (Q-LIT) mass spectrometry (MS) library spectra was developed. Following the protocol, an enhanced product ion (EPI) library of 240 pesticides was developed by use of spectra collected from two laboratories. A LC-Q-LIT-MS workflow using scheduled multiple reaction monitoring (sMRM) survey scan, information-dependent acquisition (IDA) triggered collection of EPI spectra, and library search was developed and tested to identify the 240 target pesticides in one single LC-Q-LIT MS analysis. By use of LC retention time, one sMRM survey scan transition, and a library search, 75–87% of the 240 pesticides were identified in a single LC/MS analysis at fortified concentrations of 10 ng/g in 18 different foods. A conventional approach with LC-MS/MS using two MRM transitions produced the same identifications and comparable quantitative results with the same incurred foods as the LC-Q-LIT using EPI library search, finding 1.2–49 ng/g of either carbaryl, carbendazim, fenbuconazole, propiconazole, or pyridaben in peaches; carbendazim, imazalil, terbutryn, and thiabendazole in oranges; terbutryn in salmon; and azoxystrobin in ginseng. Incurred broccoli, cabbage, and kale were screened with the same EPI library using three LC-Q-LIT and a LC-quadruple time-of-flight (Q-TOF) instruments. The library search identified azoxystrobin, cyprodinil, fludioxinil, imidacloprid, metalaxyl, spinosyn A, D, and J, amd spirotetramat with each instrument. The approach has a broad application in LC-MS/MS type targeted screening in food analysis.