American Chemical Society
Browse
pr0c00535_si_004.xlsx (3.65 MB)

Proteotyping SARS-CoV‑2 Virus from Nasopharyngeal Swabs: A Proof-of-Concept Focused on a 3 Min Mass Spectrometry Window

Download (3.65 MB)
dataset
posted on 2020-08-05, 19:06 authored by Duarte Gouveia, Guylaine Miotello, Fabrice Gallais, Jean-Charles Gaillard, Stéphanie Debroas, Laurent Bellanger, Jean-Philippe Lavigne, Albert Sotto, Lucia Grenga, Olivier Pible, Jean Armengaud
Rapid but yet sensitive, specific, and high-throughput detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in clinical samples is key to diagnose infected people and to better control the spread of the virus. Alternative methodologies to PCR and immunodiagnostics that would not require specific reagents are worthy to investigate not only for fighting the COVID-19 pandemic but also to detect other emergent pathogenic threats. Here, we propose the use of tandem mass spectrometry to detect SARS-CoV-2 marker peptides in nasopharyngeal swabs. We documented that the signal from the microbiota present in such samples is low and can be overlooked when interpreting shotgun proteomic data acquired on a restricted window of the peptidome landscape. In this proof-of-concept study, simili nasopharyngeal swabs spiked with different quantities of purified SARS-CoV-2 viral material were used to develop a nanoLC–MS/MS acquisition method, which was then successfully applied on COVID-19 clinical samples. We argue that peptides ADETQALPQR and GFYAQGSR from the nucleocapsid protein are of utmost interest as their signal is intense and their elution can be obtained within a 3 min window in the tested conditions. These results pave the way for the development of time-efficient viral diagnostic tests based on mass spectrometry.

History