posted on 2015-12-17, 03:47authored byRémi Zallot, Céline Brochier-Armanet, Kirk W. Gaston, Farhad Forouhar, Patrick A. Limbach, John F. Hunt, Valérie de Crécy-Lagard
Queuosine (Q) is a modification found
at the wobble position of
tRNAs with GUN anticodons. Although Q is present in most eukaryotes
and bacteria, only bacteria can synthesize Q de novo. Eukaryotes acquire queuine (q), the free base of Q, from diet and/or
microflora, making q an important but under-recognized micronutrient
for plants, animals, and fungi. Eukaryotic type tRNA-guanine transglycosylases
(eTGTs) are composed of a catalytic subunit (QTRT1) and a homologous
accessory subunit (QTRTD1) forming a complex that catalyzes q insertion
into target tRNAs. Phylogenetic analysis of eTGT subunits revealed
a patchy distribution pattern in which gene losses occurred independently
in different clades. Searches for genes co-distributing with eTGT
family members identified DUF2419 as a potential Q salvage protein
family. This prediction was experimentally validated in Schizosaccharomyces
pombe by confirming that Q was present by analyzing tRNAAsp with anticodon GUC purified from wild-type cells and by
showing that Q was absent from strains carrying deletions in the QTRT1
or DUF2419 encoding genes. DUF2419 proteins occur in most Eukarya
with a few possible cases of horizontal gene transfer to bacteria.
The universality of the DUF2419 function was confirmed by complementing
the S. pombe mutant with the Zea mays (maize), human, and Sphaerobacter thermophilus homologues.
The enzymatic function of this family is yet to be determined, but
structural similarity with DNA glycosidases suggests a ribonucleoside
hydrolase activity.