ja035292t_si_001.cif (20.9 kB)

Oxygen Binding to Sulfur in Nitrosylated Iron−Thiolate Complexes:  Relevance to the Fe-Containing Nitrile Hydratases

Download (20.9 kB)
dataset
posted on 30.08.2003, 00:00 by Chien-Ming Lee, Chung-Hung Hsieh, Amitava Dutta, Gene-Hsiang Lee, Wen-Feng Liaw
Iron−nitrosyl complex containing S-bonded monosulfinate [PPN][(NO)Fe(S,SO2-C6H4)(S,S-C6H4)] (3) has been isolated from sulfur oxygenation of complex [PPN][(NO)Fe(S,S-C6H4)2] (2) which is obtained from addition of NO molecule to [PPN][(C4H8O)Fe(S,S-C6H4)2] (1) in organic solvents. This result reveals that binding of NO to the iron center promotes sulfur oxygenation of iron dithiolates by dioxygen and stabilizes the S-bonded sulfinate iron species. Analysis of the bond angles for complexes 2 and 3 reveals that iron is best described as existing in a distorted trigonal bipyramidal coordination environment surrounded by one NO, three thiolates, and one sulfinate in complex 3, whereas the distorted square pyramidal geometry is adopted in complex 2. Complex 3 further reacts in organic solvents with molecular oxygen in the presence of [PPN][NO2] to produce the dinuclear bis(sulfinate) complex [PPN]2[(NO)Fe(SO2,SO2-C6H4)(S,S-C6H4)]2 (4). Complex 3 showed reaction with PPh3 in THF/CH2Cl2 to yield complex 2 and Ph3PO. Upon photolysis of CH2Cl2 solution of complex 3 under N2 purge at ambient temperature, the UV−vis and IR spectra consistent with the formation of complex 2 demonstrate that complex 2 and 3 are photochemically interconvertible. Obviously, complex 3 is thermally quite stable but is photochemically active toward [O] release. Also described are the X-ray crystal structures of 3 and 4.

History